Вед. науч. сотр. Б.Е. Собко (Национальный горны университет)

ОЦЕНКА ТЕХНИКО-ЭКОНОМИЧЕСКИХ ПОКАЗАТЕЛЕЙ ПРИ ПОВЫШЕНИИ ЭФФЕКТИВНОСТИ ДОБЫЧИ ТИТАНОЦИРКОНИЕВЫХ РУД В УКРАИНЕ

Проведений аналіз техніко-економічних показників підприємств України по видобутку титаноцирконієвих руд.

ESTIMATION OF TECHNICAL AND ECONOMIC PARAMETERS AT INCREASE OF EFFICIENCY OF EXTRACTION TITANIUM-ZIRCONIUM ORES IN UKRAINE

The performance characteristics of enterprises of Ukraine are resulted on the booty of titan-zirconium ores.

Титаноциркониевые концентраты находят широкое применение в самых различных отраслях промышленности (авиакосмической, химической, черной и цветной металлургии и др.), их потребление является показателем уровня научнотехнического и экономического развития государства, его обороноспособности.

До 1991 года производство титаноциркониевых концентратов и пигментного диоксида титана, которые потребляли предприятия СССР, осуществлялось на Украине. Производство же титановой губки и металлического титана было в основном сосредоточено в России и составляло более 60% общемирового производства, превосходя по своим объемам производство аналогичной продукции в США, Японии, Великобритании, Франции и Германии вместе взятых.

В постсоветское время Украина, оказавшись наследницей мощной горнодобывающей промышленности, одновременно лишилась перерабатывающей промышленности, попав тем самым в зависимость от экспортных поставок титанового сырья зарубежным фирмам.

Минерально-сырьевая база титаноциркониевых руд в Украине наиболее мощная среди группы цветных и редких металлов. В настоящее время в Украине сырьевая база россыпей титана и циркония насчитывает более 40 месторождений, среди которых одно уникальное (Малышевское месторождение), 13 — крупных, 10 - средних. Известно также около 280 перспективных рудопроявлений и 1900 точек минерализации (неоцененных рудопроявлений) россыпного типа.

Основной минеральной базой титана и циркония являются ильменитовые и комплексные рутил-циркон-ильменитовые россыпи. На базе этих месторождений работают два предприятия: Вольногорский ГМК (ВГМК), и Иршанский ГОК (ИГОК) с суммарной производственной мощностью более 700 тыс.т. концентратов в год. В табл.1 приведены объемы производства горных работ ВГМК и ИГОКа за период с 1990 по 2007г. Данные предприятия целиком удовлетворяли потребности потребителей губчатого титана и пигментной окиси титана всего бывшего СССР. С 2005 года начал разработку Демуринский ГОК (Вовчанское рутил-ильменитовое месторождение) с проектной мощностью 1,3 млн.м³/год. В настоящее время Украина вырабатывает более 95 % всего титанового сырья в странах СНГ.

Таблица 1 - Объемы производства горных работ по добыче титано-циркониевых руд в Украине

Наименование предприятия	Объемы производства горных работ, тыс. м ³											
	1990	1992	1994	1996	1998	2000	2002	2004	2006	2007		
Иршанский	10216,0	4198,0	1947,0	1384,0	2628,0	2941,0	4009,0	6357,0	6344,0	8043,0		
ГОК	5153,0	4852,0	1659,0	1989,0	2630,0	2820,0	3316,0	4178,0	4198,0	4976,0		
Вольногорс-	10473,0	13228,5	7400,5	13473,2	18175,4	15506,4	15500,0	16341,6	19100,0	11135,0		
кий ГМК	2923,1	3181,1	1208,2	2500,4	3778,5	4725,8	5352,3	5503,6	5860,0	5500,0		
Всего	20689,0	17426,5	9347,5	14857,2	20803,4	18447,4	19509,0	22698,6	25444,0	19178,0		
	8076,1	8033,1	2867,2	4489,4	6408,5	7585,8	8668,3	9681,6	10058,0	10476,0		

Примечание: числитель – объемы вскрышных работ; знаменатель – объемы добычных работ

окиси титана всего бывшего СССР. С 2005 года начал разработку Демуринский ГОК (Вовчанское рутил-ильменитовое месторождение) с проектной мощностью $1,3\,$ млн.м 3 /год. В настоящее время Украина вырабатывает более $95\,$ % всего титанового сырья в странах СНГ.

Благодаря уникальной минерально-сырьевой базе титанового и цирконового сырья Украина создала мощный экспортный потенциал. Суммарный экспорт ильменитовых концентратов в страны СНГ составляет 300-320 тыс.т, причем около половины (48-49%) титановых концентратов экспортируется в страны ЕС и США.

На рис.1 приведена динамика добычи титано-циркониевых руд в Украине с 1990 по 2007г. Как видно из приведенных данных на рис. 1 стабильные производственные показатели по выпуску товарной продукции (более 8 млн. м ³) были достигнуты в период с 1990 по 1992 гг. С 1992 г. по 1995 г. происходит резкое падение объемов производства. Это связано с распадом СССР и общим падением состояния экономики Украины в данный период, нарушением сложившихся связей между производителем и потребителем выпускаемой продукции, переходом субъектов хозяйствования на рыночные отношения. Начиная с 1996 г. наблюдается устойчивый рост объемов добычи титано-цирконового сырья за счет внедрения мероприятий по совершенствованию технологии и организации открытых горных работ, четкой и слаженной работы горнодобывающих предприятий. В 2007 г. объемы добычи руды на Иршанском и Вольногорском комбинатах достигли более 10 млн. м³. (см. табл.1). Так на ВГМК выпуск основных концентратов по сравнению с 1995 г. увеличился: - ильменита в 3 раза и составил в 2006 г. — 193,8 тыс. т.;

- рутила в 2,8 раза и составил в 2006 г. – 64,71 тыс.т; - циркона в 2,6 раза и составил в 2006 г. – 32,3 тыс.т. (см. рис.2).

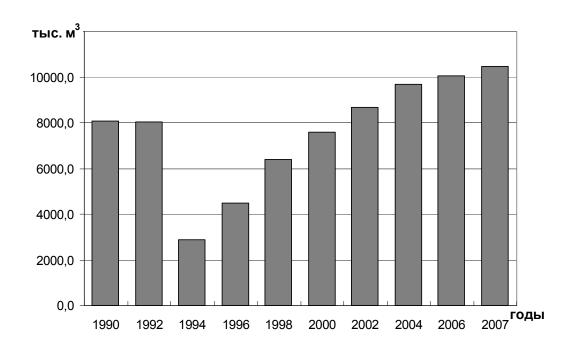


Рис. 1 – Динамика объемов добычи титаноциркониевых руд в Украине

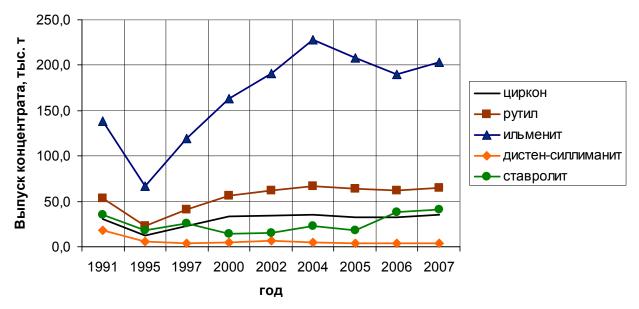


Рис. 2 – Динамика выпуска концентратов на Вольногорском ГМК

Основными статьями в себестоимости горных работ являются: горноподготовительные (вскрышные работы), налоги за пользование землей и недрами, общепроизводственные расходы (ремонтный фонд, техническое обслуживание, перемещение грузов, накладные расходы), электроэнергия, горючесмазочные материалы. На рис. 3 приведена структура основных затрат себестоимости добычи рудных песков на карьерах ВГМК. Как видно из диаграммы самой затратной частью в структуре себестоимости добычи рудных песков (63 %), составляют расходы на проведение горно-подготовительных работ за счет наличия достаточно больших объемов вскрышных работ.

Так, объемы вскрышных работ при отработке карьеров Малышевского месторождения Вольногорского ГМК в 2007 г. составили более 22 млн $\rm m^3$ в год при объемах добычи 4,5-5,5 млн. $\rm m^3$ в год (см. табл. 2) , а на проектируемом Мотроновском участке – объемы вскрыши будут составлять более 25 млн. $\rm m^3$.

Себестоимость производства вскрышных работ в разрезе прямых затрат за 2006 год составляет соответственно для Вольногорского ГМК - 3,96 грн/м 3 (среднее по карьерам), для Иршанского ГОКа – 1,63 грн/м 3 при бестранспортной системе разработки (см. табл. 3).

В ближайшей перспективе разработка рудных титано-циркониевых песков будет характеризоваться дальнейшим снижением качества полезного ископаемого, изменением его показателей по площади месторождения, значительным усложнением горно-геологических и социально-экономических условий промышленного освоения новых участков месторождения. Например, на ВГМК в 1991г. содержание циркона в руде составляло 13,5 кг/м³, тогда как в 2006г. составило 6,88 кг/м³, ильменита соответственно в 1991г. - 52,84 кг/м³, в 2006г. - 37,56 кг/м³, рутила соответственно в 1991г. - 19,29 кг/м³, в 2006г. – 13,52 кг/м³ (см. рис. 4), что при плановом увеличении выпуска концентратов влечет за собой повышение объемов производства горных работ. Так на ВГМК в 2003 г. при объемах добычи в 5,34 млн. м³ рудных песков, объем вскрышных работ составил 12,45 млн. м³. В 2007 г. при плановой добычи 5,5 млн. м³ объем вскрышных работ увеличился на 9,85 млн. м³ (см. табл.2).

Структура основных затрат себестоимости добычи рудных песков ВГМК за 2006 г.

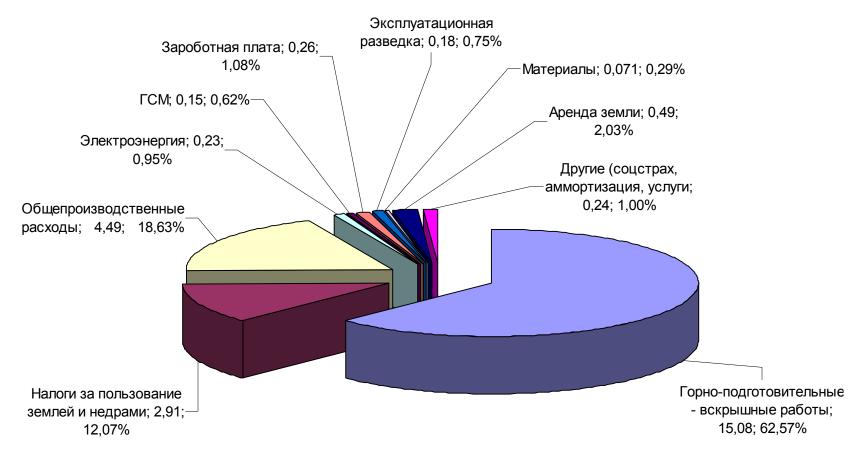


Рис. 3 - Структура основных затрат себестоимости добычи рудных песков на Вольногорском ГМК за 2006~ год

Таблица 2 - Объемы производства горных работ на карьерах Вольногорского ГМК

Система разработки	Объемы производства торных расот на карьерах Вольногорского г мих											
• •	1991	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007
	Вскрышные работы											
Карьер №7 "Север" – комбинированная система разработки в т.ч.												
- транспортная система разра- ботки с применением роторного комплекса непрерывного дейст- вия ТК – 2 (KU-800)	925,6	4625,9	4489,4	5683,5	5469,2	3850,9	3049,6	0	4124,9	5044,6	3945,2	7000,0
- бестранспортная система разра- ботки с применением драглайнов	497,8	206	587,4	398,8	276,1	226,7	139,7	222,8	673,7	1404,5	1221,6	145,0
- транспортная система разра- ботки с применением ЭКГ-8(10) и БелАЗ-7548	6900,6	3901,8	4804	5213,1	5535,3	5074,3	2692,7	3734,6	3651,9	3945,2	3847,4	3870,0
Всего	8324	8733,7	9880,8	11295,4	11280,6	9159,9	5882,0	3957,4	8450,5	10394,3	9014,2	11165,0
Карьер №7 "Юг" – комбиниро- ванная система разработки в т.ч.												
- транспортная система разраб. с примен. роторного комплекса «НКМЗ» (ЭРШР-1600)	1036,2	45179	5266,5	5546,1	1853,3	3616	6950,0	6056,4	5003,5	5788,3	6141,3	7000,0
- бестранспортная система разраб. с применением драглайнов	72,8	820,5	337	798,3	467,1	252,7	353,7	52,5	535,8	1099,6	1426,0	1355,0
- транспортная система разраб. с примен. ЭКГ-10 и БелАЗ-7548	1040,4	1046,5	2691,1	2013,4	1905,4	984,9	2314,3	2383,9	2351,8	2523,8	2518,5	2630,0
Всего	2149,4	6384,9	8294,6	8357,8	4225,8	4853,6	9618,0	8492,8	7891,1	8594,8	10085,8	11135,0
Итого по руднику	10473,4	15118,6	18175,4	19653,2	15506,4	14005,5	15500,0	12450,2	16341,6	19806,0	19100,0	22300,0
Добычные работы												
Карьер №7 «Север»	2320,6	1830,2	2168,2	2280,5	2688,6	2736,8	3416,6	2988,2	4184,2	3168,6	3040	3220,0
Карьер №7 «Юг»	602,5	1248,6	1610,3	1909,6	2037,2	2206	1935,7	2351,8	1319,4	2482,0	2820,0	2280,0
Итого по руднику	2923,1	3078,8	3778,5	4190,1	4725,8	4942,8	5352,3	5340,0	5503,6	5650,6	5860,0	5500,0

Таблица 3 - Себестоимость горных работ на Вольногорском и Иршанском комбинатах (2006 год)

Предприятие	Система разработки	Вскрышные работы, грн/м ³	Добычные работы, грн/м ³		
Иршанский ГОК	Бестранспортная	1,63	22,72		
	Бестранспортная	3,25			
Вольногорский	Транспортная	4,34	24,1		
ГМК	Транспортно- отвальная	4,3			

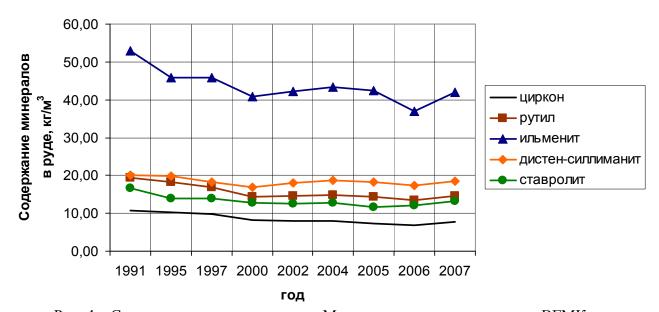


Рис. 4 – Содержание минералов в руде Малышевского месторождения ВГМК

Выводы:

- неравномерность распределения и непостоянный качественный состав рудных скоплений в россыпи оказывает большое влияние на производственно-экономические показатели карьеров при добыче титано-циркониевых руд, что обуславливает ведение валовой выемки рудных песков в режиме возможного усреднения;
- самой затратной частью в структуре себестоимости добычи рудных песков (63 % для условий ВГМК), составляют расходы на проведение горноподготовительных работ за счет наличия достаточно больших объемов вскрыши;
- для обеспечения добычи сырья заданного вида, качества и минерального состава необходимо выявить геологические закономерности распределения полезных минералов в россыпи, разработать методы оперативного планирования горных работ, способы выемки руды с учетом минерального состава пород слагающих полезную толщу и определить наиболее эффективные технологические схемы разработки вскрышных пород и добычи полезного ископаемого.